Topic 02 - Rearranging Formulae

Note: If questions like these appear on a paper, it is likely that they will be "show that" questions, therefore it will be necessary to show full working rather than simply evaluate the expressions in a calculator.
Q1, (OCR MEI 4751, Jun 2013, Q3)
(i) Evaluate $(0.2)^{-2}$.
(ii) Simplify $\left(16 a^{12}\right)^{\frac{3}{4}}$.

Q2, (OCR MEI 4751, Jan 2013, Q1)

Find the value of each of the following.
(i) $\left(\frac{5}{3}\right)^{-2}$
(ii) $81^{\frac{3}{4}}$

Q3, (OCR MEI 4751, Jan 2013, Q2)
Simplify $\frac{\left(4 x^{5} y\right)^{3}}{\left(2 x y^{2}\right) \times\left(8 x^{10} y^{4}\right)}$.
Q4 (OCR MEI 4751, Jan 2012, Q2)
(i) Evaluate $9^{-\frac{1}{2}}$.
(ii) Simplify $\frac{\left(4 x^{4}\right)^{3} y^{2}}{2 x^{2} y^{5}}$.

Q5, (OCR 4721, Jun 2016, Q5)
Express the following in the form 2^{p}.
(i) $\left(2^{5} \div 2^{7}\right)^{3}$
(ii) $5 \times 4^{\frac{2}{3}}+3 \times 16^{\frac{1}{3}}$

Q6 (OCR 4721, Jun 2015, Q3)

Express each of the following in the form 5^{k}.
(i) 25^{4}
(ii) $\frac{1}{\sqrt[4]{5}}$
(iii) $(5 \sqrt{5})^{3}$

Q7 (OCR 4721, Jan 2013, Q2)

Solve the equations
(i) $3^{n}=1$,
(ii) $t^{-3}=64$,
(iii) $\left(8 p^{6}\right)^{\frac{1}{3}}=8$.

Q8 (OCR 4221, Jun 2012, Q2)

Express each of the following in the form 7^{k} :
(i) $\sqrt[4]{7}$,
(ii) $\frac{1}{7 \sqrt{7}}$,
(iii) $7^{4} \times 49^{10}$.

Q9, (OCR 4721, Jan 2005, Q1i,ii)
(i) Express 11^{-2} as a fraction.
(ii) Evaluate $100^{\frac{3}{2}}$.

Q10, (OCR 4721, Jun 2005, Q5a, b)
(a) Simplify $2 x^{\frac{2}{3}} \times 3 x^{-1}$.
(b) Express $2^{40} \times 4^{30}$ in the form 2^{n}.

Q11, (OCR 4721, Jun 2006, Q2i,ii)
(i) Evaluate $27^{-\frac{2}{3}}$.
(ii) Express $5 \sqrt{5}$ in the form 5^{n}.

Q12, (OCR 4721, Jan 2007, Q2)
Evaluate
(i) 6^{0},
(ii) $2^{-1} \times 32^{\frac{4}{5}}$.

Q13, (OCR 4721, Jan 2008, Q3)

Solve the equations
(i) $10^{p}=0.1$,
(ii) $\left(25 k^{2}\right)^{\frac{1}{2}}=15$,
(iii) $t^{-\frac{1}{3}}=\frac{1}{2}$.

Q14, (OCR 4721, Jan 2009, Q2)
Simplify
(i) $(\sqrt[3]{x})^{6}$,
(ii) $\frac{3 y^{4} \times(10 y)^{3}}{2 y^{5}}$.

